Thermochimica Acta 479 (2008) 62-63



Contents lists available at ScienceDirect

# Thermochimica Acta



journal homepage: www.elsevier.com/locate/tca

Addendum

# Addendum to "Effect of intramolecular cyclization on the enthalpies of solvation of tetramethylurea in water and alkanols at 298.15 K" [Thermochim. Acta 475 (2008) 72–75]

### Evgeniy V. Ivanov\*, Valeriy I. Smirnov, Vladimir K. Abrosimov

Laboratory of Thermodynamics of Solutions of Non-electrolytes and Biologically Active Substances, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia

### ARTICLE INFO

Article history: Received 4 September 2008 Accepted 9 September 2008 Available online 1 November 2008

#### Table 1

Standard enthalpies of solution,  $\Delta_{sol}H^{\circ}$  (kJ mol<sup>-1</sup>), and solvation,  $\Delta_{solv}H^{\circ}$  (kJ mol<sup>-1</sup>), for DMEU (I) and TMU (II) in H/D-isotopologues of water and methanol at 298.15 K.

| Solvent                 | $\Delta_{ m sol} H^{\circ} \ ({ m I})^{ m a}$ | $\Delta_{sol} H^\circ$ (II) <sup>a</sup> | $\Delta \Delta_{\rm sol} H^{\circ} \ ({\rm II} \rightarrow {\rm I})^{\rm a}$ | $\Delta_{ m solv} H^\circ$ (I) <sup>b</sup> | $\Delta_{ m solv} H^{\circ}$ (II) <sup>b</sup> | $\Delta \Delta_{solv} H^{\circ} (II \rightarrow I)$ |
|-------------------------|-----------------------------------------------|------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------|-----------------------------------------------------|
| H <sub>2</sub> O        | $-17.18 \pm 0.08^{\circ}$                     | $-22.19\pm0.05^{\text{d}}$               | $5.01\pm0.09$                                                                | -77.3                                       | -76.2                                          | -1.1                                                |
| D <sub>2</sub> O        | $-18.15 \pm 0.05$                             | $-23.38 \pm 0.10$                        | $5.23\pm0.11$                                                                | -78.3                                       | -77.4                                          | -0.9                                                |
| $H_2O \rightarrow D_2O$ | $-0.97\pm0.10$                                | $-1.19 \pm 0.11$                         | $0.22\pm0.14$                                                                | -1.0                                        | -1.2                                           | 0.2                                                 |
| MeOH                    | $-1.50\pm0.02^{c}$                            | $-4.58\pm0.01^d$                         | $3.08\pm0.02^{c}$                                                            | -61.6                                       | -58.6                                          | -3.0                                                |
| MeOD                    | $-1.75 \pm 0.02$                              | $-5.01 \pm 0.11$                         | $3.26\pm0.11$                                                                | -61.9                                       | -59.0                                          | -2.9                                                |
| $MeOH \rightarrow MeOD$ | $-0.25\pm0.03$                                | $-0.43\pm0.11$                           | $0.18\pm0.12$                                                                | -0.3                                        | -0.4                                           | 0.1                                                 |

<sup>a</sup> The mean-weighted  $|\Delta_{sol}H^m|_{av} = \Delta_{sol}H^{\circ}$  values, where *m* is the solution molality, were found from the results of five measurements ranging between 0.006 and 0.025 mol (kg solvent)<sup>-1</sup>; errors represent 95% confidence interval half-with [4].

<sup>b</sup> The revised vaporization enthalpies,  $\Delta_{vap}H^{\circ}$  (298.15 K), being 54.0 (±0.5) for TMU [5] and 60.1 ± (0.5) kJ mol<sup>-1</sup> for DMEU [6] were used in calculations.

<sup>c</sup> The value from Ref. [1].

<sup>d</sup> The value from Ref. [7].

As it was shown in the previous report [1], the molecular cyclic analogue of 1,1,3,3-tetramethylurea (TMU), 1,3-dimethyl-2imidazolidinone or *N*,*N*-dimethylethyleneurea (DMEU), dissolves with a heat evolution only in water and MeOH (unlike another low-molecular alkanols). It is obvious that these exothermic ("structure-making") effects should be even more pronounced upon deuterium-substitution in the solvent molecules [2], i.e., in  $H_2O \rightarrow D_2O$  and MeOH  $\rightarrow$  MeOD transitions. Therefore, in addition to results reported in the "key" article [1], we present here data on the enthalpies of dissolution of TMU and DMEU in MeOD (Izotop Co., St.-Petersburg, with a deuterium content of 99.0 at%) and  $D_2O$  (Izotop Co., 99.9 at.% D). The alcohol was additionally purified by refluxing with magnesium methoxide under inert (nitrogen) atmosphere [3]. The water content of MeOD was below 0.03 mass% (Fisher analyses). The experimental data are summarized in Table 1.

One can see from the table that the H/D-isotope substitution in all cases considered induces an increase in exothermicity of the enthalpy of a solute dissolution. For aqueous solutions, this structuring effect is the substantially more pronounced, supporting the conclusion [1] that hydrophobic hydration is the predominant type of DMEU hydration. However, like values of  $\Delta \Delta_{sol} H^{\circ}$  $(TMU \rightarrow DMEU)$  in aqueous and methanolic media,  $H_2O \rightarrow D_2O$  and  $MeOH \rightarrow MeOD$  isotope effects on the specified quantity of transfer are positive, too (Table 1). That is, the cyclization of a TMU molecule result in weakening of its structure-making effect and solvation, as a whole. It is noteworthy that the solvent isotope effects on  $\Delta_{sol(v)}H^{\circ}$  for both solutes compared (see the table) are roughly equal to the isotope effects on the energy of water-water and methanol-methanol hydrogen bonds being, respectively, ca.  $-1.0 \text{ kJ} \text{ mol}^{-1}$  [8,9] and *ca*.  $-0.4 \text{ kJ} \text{ mol}^{-1}$  [8] at 298.15 K. This indicates that DMEU and TMU are capable of forming *exactly* hydrogen

DOI of original article: 10.1016/j.tca.2008.07.001.

<sup>\*</sup> Corresponding author. Tel.: +7 4932 351859; fax: +7 4932 336246. *E-mail address:* evi@isc-ras.ru (E.V. Ivanov).

#### Table 2

Standard enthalpies of solvation of DMEU (I) and TMEU (II),  $\Delta_{solv}H^\circ$  (kJ mol $^{-1}$ ), in water and alkanols at 298.15 K.

| Property <sup>a</sup>                                                     | $H_2O$ | MeOH | EtOH | 1-PrOH | 2-PrOH | 1-BuOH | t-BuOH |
|---------------------------------------------------------------------------|--------|------|------|--------|--------|--------|--------|
| $-\Delta_{ m solv}H^{\circ}$ (I)                                          | 77.3   | 61.6 | 58.1 | 57.1   | 55.5   | 56.3   | 59.1   |
| $-\Delta_{solv}H^{\circ}$ (II)                                            | 76.2   | 58.6 | 55.3 | 54.4   | 52.6   | 53.7   | 56.4   |
| $-\Delta \Delta_{\text{solv}} H^{\circ} (\text{II} \rightarrow \text{I})$ | 1.1    | 3.0  | 2.8  | 2.7    | 2.9    | 2.6    | 2.7    |

<sup>a</sup> Values are determined with an error no more than  $\pm 1 \text{ kJ mol}^{-1}$ .

bonds both with aqueous and methanolic surroundings. In the deuterated solvation complexes, these bonds are more stable than those in the protiated analogues. Herewith, a negative sign at the  $\Delta\Delta_{solv}H^{\circ}$  (TMU  $\rightarrow$  DMEU) values and their increasing in magnitude on going from water H/D-isotopologues to methanol ones can serve as the corroboration of the conclusion [1] that the more polar molecules of TMU cyclic analogue are responsible for the higher hydrogen-bond-accepting ability.

#### Appendix A. Erratum

In conclusion, we should correct the mistakes which have involuntarily slipped in Table 2 of the key article [1]. These inaccuracies are related to the wrong-established enthalpies of a solute vaporization,  $\Delta_{vap}H^{\circ}$ , namely, *ca*. 52.0 kJ mol<sup>-1</sup> for DMEU and *ca*. 45.5 kJ mol<sup>-1</sup> for TMU at 298.15 K. As a consequence, the solvation enthalpies for these solutes in aqueous and alkanolic media have been incorrectly estimated, too. At the same time the difference in the revised  $\Delta_{vap}H^\circ$  between DMEU and TMU (see the note b under Table 1 of this work) is found to be practically unaltered being (6 ± 1) kJ mol<sup>-1</sup>. Therefore, all conclusions made on the basis of  $\Delta_{solv}H^\circ$  (DMEU  $\rightarrow$  TMU) values in the previous (key) article [1] remain in force. The corrected values of  $\Delta_{solv}H^\circ$  for DMEU and TMU in water and alkanols (MeOH, EtOH, 1-PrOH, 2-PrOH, 1-BuOH, and *t*-BuOH) are listed below in Table 2.

#### References

- [1] E.V. Ivanov, V.I. Smirnov, V.K. Abrosimov, Thermochim. Acta 475 (2008) 72-75.
- [2] M. Nakamura, K. Tamura, S. Murakami, Thermochim. Acta 253 (1995) 127–136.
- [3] C. Mann, in: A.J. Bard (Ed.), Electrochemical Chemistry, vol. 3, Marcel Dekker Inc., New York, 1969, p. 57.
- [4] E.V. Ivanov, V.K. Abrosimov, V.I. Smirnov, Thermochim. Acta 463 (2007) 27–31.
- [5] P. Kneisl, J.W. Zondlo, J. Chem. Eng. Data 32 (1987) 11-13.
- [6] R.F. de Farias, Quím. Nova 22 (1999) 509-511.
- [7] E.V. Ivanov, V.K. Abrosimov, V.I. Smirnov, Thermochim. Acta 449 (2006) 90–92.
- [8] I.B. Rabinovich, Influence of Isotopy on the Physicochemical Properties of Liquids, Consultant Bureau, New York, 1970.
- [9] A. Ben-Naim, A Solvation Thermodynamics, Plenum Press, New York, 1987.

<sup>&</sup>lt;sup>b</sup> T = 299.15 K.